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Owing to the increase in civil applications using quadcopters, commercial flight control systems such as 
Pixhawk are a popular solution to provide the sensing and control functions of an unmanned aerial 
vehicle (UAV). A low-cost global navigation satellite system (GNSS) receiver is crucial for the low-
cost flight control system. However, the accuracy of GNSS positioning is severely degraded by the 
notorious multipath effect in mega-urbanized cities. The multipath effect cannot be eliminated but 
can be mitigated; hence, the GNSS/inertial navigation system (INS) integrated navigation is a popular 
approach to reduce this error. This study proposes an adaptive Kalman filter for adjusting the noise 
covariance of GNSS measurements under different positioning accuracies. The adaptive tuning is based 
on a proposed accuracy classification model trained by a supervised machine-learning method. First, 
principal component analysis is employed to identify the significant GNSS accuracy related features. 
Subsequently, the positioning accuracy model is trained based on a random forest learning algorithm 
with the labeled real GNSS dataset encompassing most scenarios concerning modern urban areas. To 
reduce the cases of misclassifying the GNSS accuracy, a fuzzy logic algorithm is employed to consider the 
GNSS accuracy propagation. Additionally, the process noise covariance of the INS is determined using the 
Allan variance analysis. The positioning performance of the proposed adaptive Kalman filter is compared 
with both a conventional Kalman filter and the positioning solution provided by the commercial flight 
control system, Pixhawk 2. The results show that the proposed adaptive Kalman filter using random 
forest with fuzzy logic can achieve a better classification of GNSS accuracy compared to the others. The 
overall positioning result improved by approximately 50% compared with the onboard solution.

© 2018 Elsevier Masson SAS. All rights reserved.
1. Introduction

Unmanned aerial vehicle (UAV) is increasingly used in civilian 
applications, such as disaster search and rescue [1], package de-
livery [2], and mapping of three-dimensional (3D) city models [3]. 
Localization is essential in UAV guidance, navigation, and control 
(GNC). Almost all outdoor UAVs are equipped with a global nav-
igation satellite system (GNSS) receiver to provide their absolute 
location. A GNSS receiver receives and processes all the satellite 
signals to obtain the distances between the receiver and satel-
lites, known as a pseudo-range. Subsequently, the pseudo-ranges 
are operated in conjunction with the satellite positions to deter-
mine the UAV position. The performance of the GNSS positioning 
is affected by several factors, including satellite clock/orbit bias, 
atmospheric delay, and receiver thermal noise [4]. Currently, the 
biases caused by atmosphere and satellite orbit and clocks can be 
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significantly corrected using a satellite-based augmentation system 
(SBAS) correction to achieve 1–2 m of positioning error in open-
sky areas [5]. Inevitably, the low-attitude operating environment 
for a UAV becomes closer to civilians. In other words, it operates 
in the vicinity of urban cities or even inside urban areas. Com-
pared to an open field, the urban configuration is denser and more 
complex. The urban configuration has caused many researchers to 
focus on using active sensors, including monocular/stereo cameras 
and light detection and ranging (LiDAR). Similar to the research de-
velopment of autonomous driving vehicles, the LiDAR- and vision-
sensor-based perception and localization became a major research 
stream in the UAV development. In 2012, a comprehensive survey 
focused on the GNC of an unmanned rotorcraft system was re-
leased [6]. It indicated that the actives sensors demonstrated their 
capabilities in obstacle detection [7], 3D mapping [8], and land-
ing area detection [9]. In terms of localization, the LiDAR-based 
simultaneous localization and mapping could achieve submeter ac-
curacy in a GNSS-denied area such as indoor environments [10]. 
With the 3D point cloud map in absolute coordinates, the LiDAR 
can also provide absolute localization. However, owing to the ex-
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Fig. 1. Demonstration of GNSS positioning error in urban areas (a) without and (b) with the appearances of 3D building model. The yellow and blue lines indicate the true 
trajectory and position solution of a GNSS receiver embedded in a commercial FCS, respectively. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)
cessive computational load and memory expense, it is very difficult 
for the LiDAR-based rotorcrafts to perform well in applications that 
require a large area and long lifetime. In addition, the construction 
or preparation of the absolute 3D point cloud in a wide area re-
quires expensive equipment and heavy manual calibration. Finally, 
the active sensor itself is too costly to be implemented in mass-
market applications, including window-to-window parcel-delivery 
service. Vision odometry is also a popular option to provide a mo-
tion model to assist the dead reckoning (DR) of the UAV [11]. 
Vision odometry is similar to MEMS INS but with a slower ac-
cumulated error, i.e., it cannot estimate the absolute position [12]. 
Aerial mapping vehicles typically apply highly accurate GNSS/INS 
integrated receivers to provide submeter navigation service [13]. 
However, these high-end equipment require a geodetic grade dual-
frequency GNSS antenna with a choke-ring design to mitigate mul-
tipath effects, high sampling rate dual-frequency GNSS receiver to 
eliminate ionosphere delay and tactical, and fiber optics INS to pro-
vide stable DR. Collectively, the price of the high-end equipment 
is within the range of 30,000 to 100,000 US dollars. In addition 
to the high cost, the weight of such equipment is approximately 
2 kg to 4 kg. Therefore, it is clearly not suitable for consumer 
UAV in terms of the price budget and payload. Considering the fac-
tors listed above, the ideal sensor to provide absolute positioning 
is the consumer-grade GNSS receiver with single-frequency patch 
antenna that merely costs approximately 10 US dollars and 10 g 
of weight. For example, the popular Pixhawk flight control sys-
tem (FCS) for quadcopters are embedded with a low-cost GNSS 
receiver and MEMS inertial measurement units (IMUs). The goal of 
this research is to improve the GNSS positioning performance for 
the low-cost FCS even in the highly urbanized HK central business 
district areas.

Hence, the cause of GNSS localization error must be addressed. 
GNSS satellites broadcast signals containing information of the 
satellite clock/orbit, and the transmit time. The signal passes 
through the atmosphere and is received by the receiver on Earth. 
Finally, the receiver’s position can be estimated using the trian-
gulation theory. In general, the triangulation is linearized by con-
sidering the first-order Taylor series and subsequently applying 
least squares to estimate the receiver position [14]. Several er-
rors arise in the process, including ionospheric delay, tropospheric 
delay, satellite orbit/clock error, receiver thermal noise, and mul-
tipath effects. Differential GNSS (DGNSS) and real time kinemat-
ics (RTK) are technologies based on the principle that most error 
sources are differentiable between the GNSS reference station and 
aircrafts [15]. Thus, submeter or even centimeter levels of GNSS 
positioning can be achieved [16]. Unfortunately, in urban canyons, 
the GNSS signal suffers from signal blockages, diffraction, and re-
flection by buildings and skyscrapers, resulting in several tens of 
localization errors. These effects cannot be eliminated by differ-
ential technologies because the base station does not share the 
same signal reflection as the aerial rover. Currently, a universal 
model or a solution to solve this multipath effect and non-line-of-
sight (NLOS) reception does not exist. Therefore, this phenomenon 
is the current impediment of the application of GNSS localization 
in an urbanized area [17]. The multipath and NLOS are currently 
the dominant errors of GNSS positioning in mega cities such as 
Hong Kong, Tokyo, and New York [18]. They can be severe and 
cause 70 m of GNSS positioning error, as shown in Fig. 1(a). Com-
pared with the distances between buildings in an urban area, this 
level of positioning performance is hazardous for UAVs, as shown 
in Fig. 1(b). The UAVs risk crushing on buildings owing to the erro-
neous GNSS positioning solutions. Hence, the multipath and NLOS 
error must be handled to achieve a safe and reliable UAV opera-
tion in urban areas [19]. The multipath effect can be mitigated by 
sophisticated GNSS antenna arrays [20–22], receiver correlator de-
signs [23–25], and 3D city models [26–28]. However, a complete 
solution to eliminate this error does not exist. An effective solu-
tion is to integrate the onboard GNSS receiver with the inertial 
navigation system (INS) owing to their complementary [29].

The Kalman filter is widely employed to integrate the GNSS 
and INS with a balance between the two systems. Typically, the 
INS is used as a prediction, and the GNSS as a measurement. The 
tuning of both processes and measurement noise covariances will 
affect the Kalman gain, implying the weighting between system 
prediction and measurement update [30]. In general, the process 
noise covariance ( Q ) and measurement noise covariance (R) are 
fixed values, resulting in a constant weighting between the INS 
and GNSS. However, the operating environment (implying GNSS 
accuracy) is different in urban areas. Subsequently, constant tuning 
cannot yield an optimal performance. An adaptive tuning algo-
rithm is required to describe the noise of the measurement model 
of the GNSS. A loosely coupled GPS/INS integration that tuned 
its R of the Kalman filter by the innovation/residual between the 
measurement and propagation is proposed [31]. To improve the 
residual-based adaptive Kalman filter (AKF), a quasi-accurate de-
tection method is proposed to solve the noise generated by abrupt 
motion changes [32]. Hajiyev and Soken developed a robust AKF to 
isolate sensor/actuator faults by assigning multiple adaptive factors 
for both Q and R [33]. A cubature Kalman-filter-based multipath 
mitigation tracking system is developed for land-based navigation 
systems to remove the reflection components for distance mea-
suring equipment (DME) measurement [34]. An initial alignment 
for the Strapdown INS/GNSS integrated system using AKF is re-
cently proposed [35]. Gao et al. proposed a maximum posterior 
and random weighting approach to conquer the deficiency of the 
unscented Kalman filter for the INS/GNSS integrated navigation 
[36]. Recently, a fuzzy logarithmic least-squares method is pro-
posed to handle the traditional analytic hierarchy of GPS accuracy 
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Fig. 2. (a) Self-assembled quadcopter; (b) Pixhawk 2 flight control system (with an autopilot software); (c) u-blox NEO-M8N GNSS chip; (d) MEMS IMU including LSM303D 
integrated accelerometers/magnetometers and L3GD20 gyroscopes.
for the AKF [37]. This method accurately evaluates the performance 
of their fusion algorithm, which is essential in multisensor integra-
tion. In this study, we propose an AKF-based INS/GNSS integration 
scheme specifically for commercial FCSs. In fact, a GNSS receiver 
provides several parameters, such as position dilution of precision 
(PDOP), numbers of satellite tracked, etc. The GNSS parameters are 
related to the operation environment of the GNSS receiver [38]. We 
developed an intelligent AKF that adjusts its R based on the FCS-
output GNSS parameters. The proposed AKF algorithm can achieve 
a better positioning accuracy than the conventional Kalman filter 
and the onboard positioning solution provided by Pixhawk 2.

The paper is organized as follows. Section 2 states the objec-
tive of this research. In section 3, the details of the proposed AKF 
based on supervised machine learning is introduced. The experi-
mental results are provided in section 4. Finally, the conclusions 
are presented in section 5.

2. Problem statement

2.1. Low-cost quadrotor UAV system

The quadrotor UAV has exhibited great potential in the past few 
years. One reason is its low cost in both mechanical and elec-
trical components. Thus, we selected a self-assembled 99 mm ×
99 mm quadrotor as the target UAV platform, as shown in Fig. 2(a). 
The flight control system is provided by one of the most popu-
lar low-cost autopilot avionics, Pixhawk 2, as shown in Fig. 2(b) 
[39]. Pixhawk 2 is embedded with a low-cost u-blox NEO-M8N 
GNSS modular and MEMS IMU (LSM303D integrated accelerome-
ters/magnetometers and L3GD20 gyroscopes) as shown in Fig. 2(c) 
and (d), respectively. During a flight, the avionics will store the 
flight information including the IMU raw measurements and GNSS 
measurements, barometer measurements, and magnetometer mea-
surements.

In Pixhawk 2, the output GNSS measurement contains not only 
the 3D positioning solution but also the parameters relating to the 
GNSS positioning. The GNSS parameters and their corresponding 
meanings from the Pixhawk GNSS log data are shown in Table 1. 
The proposed adaptive tuning algorithm is developed based on the 
Pixhawk 2 as it is a well-known autopilot system. However, some 
of the features may have no relationship for classification and may 
even influence the classification accuracy. Therefore, the PCA tech-
nique is employed to select the major related features and aid in 
classification.
Table 1
GNSS measurements and parameters outputted by Pixhawk 2 flight control system.

GPS parameters 
outputted by Pixhawk 2

Description Unit

GPSTime Time data with GPS week/second format μs
Fix GPS fixed mode –
EPH Standard deviation of horizontal 

positioning error
m

EPV Standard deviation of vertical positioning 
error

m

Lat Latitude solution ◦
Lon Longitude solution ◦
Alt Altitude solution m
VelN Velocity along N-axis in NED frame m/s
VelE Velocity along E-axis in NED frame m/s
VelD Velocity along D-axis in NED frame m/s
nSat Number of satellites for positioning –
N GPS noise –
J GPS jamming –

2.2. Performance of the GNSS solutions of Pixhawk 2 in target UAV 
operation environments

We selected a dense urban area in Hong Kong that comprises 
many skyscrapers to evaluate the performance of the proposed 
AKF. According to the regulation of the Hong Kong civil aviation 
department, the UAV is banned for real flights in urban areas in 
Hong Kong. Thus, the data collection during the aerial vehicle op-
eration was manually lifted and moved following the designed 
trajectory. Three experiment routes were conducted in the open 
sky, urban canyon 1, and urban canyon 2 scenarios, as shown in 
top of Fig. 3. As shown in the figure, the GNSS positioning per-
formances are highly related to the operation environments. The 
open-sky environment is clean without surrounding buildings, i.e., 
almost no multipath effects. Consequently, the commercial GNSS 
receiver obtained satisfactory performance in open-sky areas while 
the other two did not. Notably, its positioning performance is very 
difficult to represent by a single GNSS parameter listed in Table 1. 
The objective of this paper is to classify the positioning error by a 
supervised machine learning method, and to adaptively adjust the 
measurement noise covariance of the AKF accordingly.

3. GNSS/INS integration based adaptive Kalman filter

The flowchart of the proposed AKF is shown in Fig. 4. To ad-
just the measurement noise covariance R under different circum-
stances, it is important to classify the accuracy of the GNSS so-
lutions provided by the commercial GNSS receiver. As shown in 
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Fig. 3. Target UAV operation environments including (a) urban canyon scenario 1; (b) urban canyon scenario 2; (c) open-sky scenario. Red and blue lines in the top of the 
figure denote ground truth and positioning solutions provided by commercial GNSS receiver. The notations of error, sat, N, J, and EPH can be found in Table 1.

Fig. 4. Flowchart of the proposed Kalman filter with adaptive tuning. Solid and dashed lines indicate online and offline operation, respectively.
Fig. 3, the GNSS receiver provides several parameters related to the 
operation environment of the GNSS receiver. We first use principal 
component analysis (PCA) to disclose the significant features to re-
veal the accuracy of the GNSS solution. The relationship between 
the identified GNSS features and the labeled GNSS positioning ac-
curacy can be derived by supervised machine-learning algorithms. 
The rationale behind this approach is that the complexity of the 
urban environments affects different GNSS parameters inexplicitly. 
Consequently, the relationship becomes difficult to derive by anal-
ysis. The benefit of the machine-learning approaches is that the 
well-trained model could achieve acceptable classification accu-
racy without understanding the detailed relationship. Among the 
machine-learning algorithms, the proposed adaptive Kalman fil-
ter employs the random forest (RF) for the classification of the 
GNSS positioning accuracy. However, the model trained by the RF 
algorithm could still exhibit misclassifications owing to the out-
of-sample error. This misclassification will influence the overall 
integration performance. During the UAV operation, the GNSS ac-
curacy should change gradually instead of rapidly because most 
of the commercial GNSS receivers are implemented with a strong 
filter design. Consequently, the rapidly changed classification re-
sults could indicate misclassifications. In this study, we further 
employed a fuzzy logic algorithm to smooth the rapid changing 
classification and mitigate the misclassification error. Based on the 
proposed classification model of the GNSS positioning accuracy, 
the adaptive tuning of the measurement noise covariance of the 
proposed Kalman filter can be conducted. The process noise covari-
ance, which is used model the uncertainty of INS, is determined by 
a sophisticated algorithm, i.e., the Allan variance analysis [40]. Fi-
nally, the proposed AKF is processed with the GNSS measurements, 
IMU inputs, and their noise covariance to calculate the navigation 
solution of the UAV.

3.1. System formulation

To better demonstrate the performance of the proposed adap-
tive tuning of R and Q, a basic Kalman filter is selected in this 
study. The formulation is described as follows:

x̂− = Fkx̂+ + uk (1)
k k−1
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k = (I − KkHk)P−

k (5)

where the subscript denotes the kth epoch, the superscript + de-
notes the state estimate after the measurement update, the sub-
script − denotes the state vector estimate after the state propaga-
tion but before the measurement update, and the caret ˆ indicates 
a Kalman filter estimate. x is the state vector consisting of the 
UAV’s 3D position r, velocity v, attitude �, bias of 3D specific 
force bf , and angular velocity bω as follows:

x =

⎡
⎢⎢⎢⎢⎣

r
v
�

bf

bω

⎤
⎥⎥⎥⎥⎦

(6)

u is the system input provided by the INS, which is calculated by 
the navigation equations. The measurements of the MEMS IMU, an-
gular rates, and specific forces, will be processed by the navigation 
equation to obtain the changes in attitude, velocity, and position of 
the UAV as follows [41]:

u =

⎡
⎢⎢⎢⎢⎣

δrINS

δvINS

δψ INS

0
0

⎤
⎥⎥⎥⎥⎦

(7)

z is the measurement provided by the commercial GNSS receiver 
as follows:

z =

⎡
⎢⎢⎢⎢⎣

rGNSS

vGNSS

0
0
0

⎤
⎥⎥⎥⎥⎦

(8)

H is the observation matrix and F is the system propagation model. 
Both H and F are used as a unity matrix in this integration. P is 
the state covariance. K is the Kalman gain. The details of the pro-
cess Q and measurement noise covariance R are introduced in the 
following subsections.

3.2. GNSS feature identification – principal component analysis (PCA)

PCA is a statistical method to observe the primary parame-
ters from the dataset in the transformed dimension [38]. Using 
orthogonal transformations, a set of correlated parameters can be 
converted into a set of linear uncorrelated parameters, namely the 
principal components. Herein, it is employed to extract primary 
characteristic features of the GNSS parameter as indicated in Ta-
ble 1. As the PCA can reduce the dimensions of multiple variables 
and convert the data into major dimensions, the GNSS parameters 
are processed with PCA to analyze their relationship with the po-
sitioning error. By selecting the first three principal components
as the major three dimensions, the GNSS data after dimension 
transformation is as shown in Fig. 5. According to the PCA result, 
the colors of blue, cyan, green, and red are dominant. Thus, we 
separated the GNSS error into four classes as shown in Table 2. 
The PCA eigenvalue and eigenvector result is shown in Table 3. 
As shown, the major GNSS parameters related to the classification 
of the GNSS positioning error are EPH, EPV, nSat, N, and J. The 
Fig. 5. Demonstration of the relationship between the GNSS positioning error and 
the extracted GNSS features by PCA. Colorbar indicates the corresponding position-
ing error.

Table 2
Definition of the classes of GNSS positioning accuracy.

Class Positioning error

Healthy (HL) below 5 m
Slightly shifted (SS) 5 to 13 m
Inaccurate (IA) 13 to 23 m
Dangerous (DG) over 23 m

Table 3
Significance of GNSS parameters to first, second, and third principal component.

PCA-1 PCA-2 PCA-3

EPH 0.023 0.214 0.242
EPV 0.067 0.488 0.718
VelN 0.001 0 0.029
VelE 0.003 0.011 0.021
VelD 0.004 0.012 0.053
nSat 0.038 0.331 0.208
N 0.184 0.754 0.613
J 0.976 0.193 0.051
Eigenvalue 399.0671 35.9236 9.9084

extracted GNSS features, which are linear uncorrelated features 
PCA-1, 2, and 3, will be used in the supervised machine-learning 
algorithms.

3.3. GNSS positioning error classification – random forest training

It is difficult to derive a linear function between the GNSS fea-
tures and their positioning accuracy. A feasible method is to em-
ploy machine-learning techniques. Three types of machine-learning 
technique exist: supervised learning, unsupervised learning, and 
reinforcement learning. In supervised learning, the learner ob-
serves the training examples with inputs and the corresponding 
desired outputs, and subsequently obtains a general decision rule 
to predict the outputs from the new inputs. This paper employs 
the supervised machine-learning technique to predict the GNSS 
positioning error. In this study, the decision tree (DT) and random 
forest (RF) supervised machine-learning methods are applied.

The DT model represents a model that uses the input con-
taining attribute values as a vector and returns an output value, 
namely the decision [42]. In a Boolean classification case, all out-
puts are defined as positive or negative. The node is an arbitrary 
feature. The branch is the value to split the input examples. The 
split example with mixed output will be further treated as a node 
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with another feature for splitting, until all the branches have been 
separated into positive and negative. The major task is to explore 
an arrangement of feature nodes that split the examples well. The 
arrangement becomes a model used to predict with new inputs. 
To determine the arrangement order of the nodes, the Shannon 
entropy is employed to evaluate the information importance. The 
Shannon entropy is the expected value of the information con-
tained in each of the message. It is used to calculate the informa-
tion gain for determining the splitting-node order. In the classifica-
tion of GNSS positioning error, the inputs are continuous values of 
different GNSS features; subsequently, the information gain of can 
be derived. The selection of the splitting node is to evaluate all 
the nodes with the corresponding information gain. By selecting 
the node with the highest information gain, the node will con-
tinue splitting with branches until all examples are separated as 
pure outputs. Finally, the node order is the training result of the 
DT.

The DT model could suffer from overfitting to the training set. 
A popular approach to handle this overfitting is the RF method 
[43]. RF is an ensemble learning method. It is constructed by 
multiple DTs with a subset of features to obtain a model for 
new data prediction. Its methodology can be described as follows. 
Given training features X = χ1, . . . , χn with the corresponding Y =
y1, . . . , yn , samples from X and Y will be separated into subsets 
of Xd and Yd (well known as bootstrapping). Each subset is trained 
by a DT. The training result of the subset of features represents 
as a model of classification, namely Yd = gd(Xd). The RF model is 
the ensemble of DTs, produced by averaging all individual DTs as 
shown below:

gRF(X) = 1

D

D∑
d=1

gDT
d (Xd) = CLRF (9)

The bootstrapping process improves the model performance be-
cause the model variance is decreased while a similar bias is main-
tained. Each random tree is determined by a random set of data, 
which is highly uncorrelated. By averaging the tress, the variance 
can be mitigated in the training sets. To determine the size B of 
RF, cross validation is used to evaluate the model performance and 
the optimal number of trees is obtained. The cross validation is 
to exclude a small number of data subset during the model train-
ing and use that subset to verify the model accuracy. Herein, an 
RF model can be trained to classify the positioning error by la-
beling the GNSS features with their associated positioning errors. 
After obtaining the RF model that comprises multiple DTs, the new 
GNSS features are used to individually classify each tree in the for-
est. By averaging all the individual predictions of each tree, the 
mean value of the prediction indicates the final classified result 
from the given GNSS features.

3.4. Propagation of classified GNSS accuracy – fuzzy logic

Commercial GNSS chips typically comprise strong filters to ob-
tain smoothed positioning solutions (because it is useful to most 
users). Consequently, the GNSS positioning error of the commer-
cial GNSS chip should change gradually instead of dramatically. 
However, the classified GNSS positioning error from the RF model 
could exhibit significant changes between two epochs because of 
the dramatic change in the GNSS features. In this study, a fuzzy 
logic approach is employed to handle the erroneous classification 
based on the nature of the smoothed error propagation. The fuzzy 
logic is implemented between two epochs (previous and current) 
of the classified results, and includes the fuzzification interface, de-
cision making logic, and defuzzification interface. Fig. 6 shows its 
flowchart. The fuzzification interface converts a “crisp” value into a 
Fig. 6. Flowchart of the fuzzy logic algorithm. CLRF
k is the classified GNSS positioning 

error by the RF model and CLFZ
k−1 and CLFZ

k are the classified GNSS positioning errors 
of the precious and current epochs, respectively.

Table 4
Base rules of the fuzzy logic used in this paper. Healthy (HL), slightly shifted (SS), 
inaccurate (IA) and dangerous (DG) are used to indicate the accuracy of GNSS po-
sitioning solution. HL, SS, IA and DG are assigned as scalar value in 1, 2, 3, and 4, 
respectively.

c2

c1 HL (1) SS (2) IA (3) DG (4)

HL (1) HL (1) HL (1) SS (2) SS (2)
SS (2) HL (1) SS (2) SS (2) IA (3)
IA (3) SS (2) IA (3) IA (3) DG (4)
DG (4) IA (3) IA (3) DG (4) DG (4)

Fig. 7. Membership functions, μ1, μ2, μ3, and μ4 for both input and output classes 
of GNSS accuracy.

fuzzy “singleton.” The probability is converted into a fuzzy number 
by a designated base rule and degree of membership (DOM) func-
tion, which are shown in Table 4 and Fig. 7, respectively. Herein, 
the DOM function is based on a linear interpolation. Both the in-
put and output classes use the same DOM function because the 
fuzzy logic is used to propagate the class of GNSS accuracy.

As shown in Table 4, there are 16 rules in the proposed fuzzy 
logic. The fuzzification is conducted by looking up the member-
ship value of each rule. At each rule r at epoch k, the membership 
values of μRF

r,k and μFZ
r,k−1 corresponding to CLRF

k and CLFZ
k−1 can be 

estimated by (10) and (11), respectively.

μR F
r,k = MFr(c1,c2)

(
CLRF

k

)
, c1,2 ∈ {1,2,3,4}, (10)

μFZ
r,k−1 = MFr(c1,c2)

(
CLFZ

k−1

)
, c1,2 ∈ {1,2,3,4}, (11)

where MF denotes the membership function shown in Fig. 7. 
c1 and c2 denote the indexes of the class of membership func-
tion used for CLRF

k and CLFZ
k−1, respectively. An example is provided 

to explain the calculation of (10) and (11). If c1 = 1 and c2 = 3, 
the rule can be determined by r(c1, c2) expressed in Table 4. Thus, 
r(c1 = 1, c2 = 3) = 2. Fig. 8 demonstrates the calculation of the 
membership value of μR F

r,k = MFr=2 (CLRF
k = 2.6). The red area in-

dicated in the left of Fig. 8 is μRF
r,k . Similarly, the membership value 

of μFZ
r,k−1 = MFr=2 (CLFZ

k−1 = 1.9) is the blue area indicated in the 
right of Fig. 8.

The weighting of each rule, r, is subsequently calculated by the 
aggregation of the two membership values of μRF and μFZ , as 
r,k r,k−1
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Fig. 8. Example of the calculation of membership values of μR F
r,k and μFZ

r,k−1.
Fig. 9. Example of the calculation of weighting of each rule, αr,k .

shown in the equation below. Fig. 9 shows the calculation of the 
weighting based on the example provided in Fig. 8. As shown in 
Fig. 9, the weighting, αr,k , is the intersection of the two member-
ship values.

αr,k = μR F
r,k ∧ μFZ

r,k−1 (12)

Subsequently, the defuzzification process is used to estimate the 
weighted average of all the rules.

CLFZ
k = 1

total_rule

total_rule∑
r=1

αr,k ·CLr (13)

where CLr ∈ {1, 2, 3, 4}. Finally, the crisp output of the fuzzy logic 
is obtained. This output is a smoothed class of GNSS accuracy that 
will be used to adaptively estimate the R of the Kalman filter.

3.5. Adaptive tuning of the proposed adaptive Kalman filter

A crucial parameter of the Kalman filter is the ratio of the state 
error to the measurement noise covariance matrices (P/R). If the 
P/R is too small, the Kalman filter will converge slower than re-
quired. Conversely, if the P/R is overestimated, the Kalman filter 
would overestimate the measurement noise and might result in a 
rapid divergence from the truth. In general, the state noise ma-
trix is initialized to the prediction of the error of state per epoch; 
subsequently, the measurement noise matrix is tuned until the 
Kalman filter is converged. By evaluating the collected GNSS data, 
an appropriate R value for different levels of GNSS accuracy (HL, 
SS, IA and DG) classified by RF and fuzzy logic can be obtained. 
The relationship between the fuzzy logic classified class CLFZ

k and 
R is shown as Fig. 10. A class value exceeding 3.5 is considered 
a severe error case. An enormous R is set to minimize the con-
tribution of the GNSS measurement in the integrated positioning 
system.

In general, the error characteristic of the IMU is not strongly 
correlated with its operating environments. The process noise co-
variance, which is used to describe the uncertainty of IMU sensors, 
is tuned in an offline process, as shown in Fig. 4. To construct the 
Q, the power spectral density (PSD) of the IMU should be com-
puted. To avoid analyzing error characteristic in the complex fre-
quency domain, the Allan variance analysis is adopted to substitute 
the frequency analysis by a time-domain estimation to observe the 
Fig. 10. Measurement noise covariance matrix R for the uncertainties of GNSS posi-
tion with regard to the class derived by RF and fuzzy logic.

Table 5
Identified error coefficients for the MEMS-IMU embedded in Pixhawk 2 FCS.

X Y Z

Accelerometers
Bias instability (m/s2) 5.7502e−4 4.8152e−4 9.7731e−4

Velocity random walk (m/s3/2) 0.0014 0.0015 0.0024

Gyroscopes
Bias instability (◦/s) 0.0027 0.0027 0.0021
Angular random walk (◦/s1/2) 0.0068 0.0069 0.0067

characteristic of the different errors of the IMU. The Allan variance 
is a time-domain analysis technique that is originally developed 
for the calibration of the frequency stability of oscillators [44]. It 
can be used to identify the characteristics of the underlying noise 
process, and can be applied to the error analysis of the IMU. The 
details of the Alan variance analysis for the IMU error can be found 
in [40]. We conducted a one-hour static experiment to process the 
Allan variance analysis. The result is shown in Fig. 11. By analyz-
ing the slope of the plot, the characteristic of the bias instability 
and random walk for both the accelerometers and gyroscopes can 
be estimated, and are indicated in Table 5. The values of the bias 
instability and random walk can be used to estimate the value of 
the process noise covariance matrix Q for the proposed AKF.

4. Experimental result

The proposed AKF is evaluated by post-processing the raw data 
logged by the Pixhawk 2. The raw collected data including the raw 
IMU data and the GNSS solutions will be processed as the inputs 
for the AKF. Five GNSS/INS integrated positioning results are com-
pared:

1) commercial integrated positioning result obtained from Pix-
hawk FCS (PX4),

2) conventional (a fixed R) integrated positioning result (CKF),
3) integrated positioning result estimated by an AKF with deci-

sion tree model (DT),
4) integrated positioning result estimated by an AKF with random 

forest model (RF) and
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Fig. 11. Allan variance analysis of (a) three-axis accelerometers and (b) three-axis gyroscopes.

Fig. 12. Testing scenarios for the proposed integrated positioning system. (a) The urban scenario with turning route between two sides building; (b) The urban scenario with 
straight route between narrow buildings on two sides of the street; (c) The open-sky scenario with clear satellite visibility.

Fig. 13. Urban Test 1: Top panel indicates the positioning error of commercial GNSS chip on FCS. Bottom panel indicates the classification result of GNSS positioning error by 
different approaches.
5) The proposed integrated positioning result estimated by an 
AKF with RF and fuzzy logic model (RFFL).

As shown in Fig. 12, three scenarios are tested and detailed in 
subsections 4.1, 4.2, and 4.3, respectively.

4.1. Experiment result in urban canyon 1

The first experiment is to evaluate the positioning performance 
of the proposed AKF in an urban area; its environment is as shown 
in Fig. 12(a). The trajectory begins from START and proceeds to the 
TURNING point; subsequently, the platform will experience a 180◦
turning and follow the same route to the END (same as START). 
The buildings are distributed along two sides of the trajectory. The 
positioning error of the GNSS chip on the FCS is shown in the top 
of Fig. 13. The labeled class of positioning error and the classified 
class by DT, RF, and the proposed RFFL are shown in the bottom 
of Fig. 13. The result shows the DT model only output the inte-
ger class for the GNSS positioning error, while the RF can predict 
the float class. The fuzzy logic can mitigate the large jump in the 
classes between two epochs, rendering the RFFL class similar to the 
labeled one. The corresponding R for the position state is shown in 
Fig. 14. The CKF uses a pretuned and fixed R value, while DT, RF, 
and RFFL are based on supervised machine learning to adaptively 
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Fig. 14. Urban Test 1: Adaptive measurement noise covariance matrix R values of the position state based on different classification models.
Fig. 15. Urban Test 1: Positioning result of the five GNSS/INS integrated positioning 
systems.

adjust the R value. As shown in Fig. 14, the machine-learning-
trained models adjust the R with a small value while the GNSS 
error is small, and vice versa. The positioning results of the five 
GNSS/INS integrated positioning systems are shown in Fig. 15. The 
corresponding positioning errors are shown in Fig. 16. The mean 
and standard deviation (STD) of the positioning errors are sum-
marized in Table 6. The positioning solution provided by Pixhawk 
experienced a large error (exceeding 40 m), and its error mean and 
STD are 10.2 m and 12.7 m, respectively. In other words, it is dan-
gerous to use Pixhawk positioning to navigate the UAV operations 
in urban areas. The manually and carefully tuned R value of the 
CKF can significantly reduce the positioning error; however, it is 
still not satisfactory. The DT model adjusts the R value adaptively 
based on the condition of the GNSS measurement. It achieves a 
lower positioning error compared with the CKF. The RF model im-
proves the classification accuracy of the DT model. The proposed 
RFFL AKF can achieve a better prediction of the class of GNSS error 
by implementing the fuzzy logic smoother. It also helps to mitigate 
Table 6
Urban Test 1: Mean and STD of the positioning error of the five GNSS/INS integrated 
positioning systems.

PX4 CKF DT RF RFFL

Mean of positioning error (m) 10.2 5.7 4.9 4.3 4.1
STD of positioning error (m) 12.7 5.0 4.5 3.9 3.9

the misclassification introduced positioning error during operation. 
The proposed RFFL AKF achieves a performance of 4.1 m and 3.9 m 
in the mean and STD of the positioning error, respectively. In ad-
dition, the maximum error of the proposed AKF is less than 15 m. 
Its solution outperforms the solution provided by the Pixhawk FCS.

4.2. Experiment result in urban canyon 2

The second experiment for evaluating the proposed AKF local-
ization performance is conducted in the urban area, as shown in 
Fig. 12(b). The trajectory begins from START and proceeds to the 
END point. The buildings are closely distributed along two sides of 
the trajectory. Compared to urban canyon 1, the distance between 
the buildings at two sides is shorter. Namely, it is a narrower urban 
canyon. The positioning error of the GNSS chip on the FCS is shown 
in the top of Fig. 17. The labeled class of the positioning error and 
the classified class by DT, RF, and the proposed RFFL are shown in 
the bottom of Fig. 17. As shown, DT, RF, and RFFL cannot achieve 
the similar results as demonstrated in section 4.1. During the 90th 
to 130th epoch, the classification results exhibit large classification 
error compared to the labeled class. The misclassification is caused 
by the similar GNSS parameters in the epochs of the large and 
small positioning errors. As shown in Fig. 18, the features of EPH, 
EPV, and J exhibit small values during the misclassification period. 
This causes the machine-learning method continually classify them 
as good levels of GNSS positioning. Under this situation, the pro-
posed AKF may adaptively use the inappropriate R, and further 
introduces positioning errors during this period. The corresponding 
measurement noise covariance matrix value R is shown in Fig. 19. 
Apart from the misclassification period, DT, RF, and RFFL adjust 
Fig. 16. Urban Test 1: Positioning error of the five GNSS/INS integrated positioning systems.
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Fig. 17. Urban Test 2: Top panel indicates the positioning error of commercial GNSS chip on FCS. Bottom panel indicates the classification result of GNSS positioning error by 
different approaches.

Fig. 18. Urban Test 2: Corresponding GNSS parameters including, EPH, EPV and N, for the machine learning based classifications.

Fig. 19. Urban Test 2: Adaptive measurement noise covariance matrix R values of the position state based on different classification models.
the R appropriately while the CKF maintains a fixed value. The po-
sitioning results of the five systems are compared in Fig. 20, and 
their positioning error is shown in Fig. 21. The mean and STD of 
the positioning errors are summarized in Table 7. The positioning 
solution provided by the FCS experienced a large error. Its mean 
and STD of error are 11.8 m and 12.2 m, respectively. The manually 
tuned R of the CKF yields better results compared to the Pixhawk 
result. It is worth noting that the R of the CKF is identical in both 
urban tests 1 and 2. However, as shown in Fig. 21, the CKF er-
ror continues accumulating. Consequently, the CKF result will be 
even worse as time progresses. The AKF can correctly adjust the 
R except at the above-mentioned period. According to Table 7, the 
proposed method obtains the similar performance using the CKF. 
However, the CKF performance urban test 2 drifts while that of the 
proposed AKF does not.

4.3. Open-sky localization result

An experiment is conducted to ensure the effectiveness of the 
proposed AKF in a regular environment, i.e., an open-sky area. The 
classification of the positioning error by RFFL is shown in Fig. 22, 
and its corresponding measurement noise covariance R is shown 
in Fig. 23. Because the platform is operated in an area with a high 
visibility of the GNSS satellite, the labeled class is the “healthy” 
class (the smaller value of the class, the healthier the measure-
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Fig. 20. Urban Test 2: Positioning result of the five GNSS/INS integrated positioning 
systems.

ment). The positioning error of the proposed AKF is shown in 
Fig. 24, and the trajectory is shown in Fig. 25. The mean and STD of 
the positioning errors are summarized in Table 8. The result of the 
proposed AKF is similar to the result from Pixhawk FCS, achiev-
ing accurate positioning solution for the open-sky area. The result 
verifies the proposed AKF can maintain the accurate positioning in 
general operations.

5. Conclusions and future work

Commercial FCSs such as Pixhawk are crucial to apply UAVs to 
civil applications. GNSS positioning solutions provided by commer-
cial GNSS chips embedded on FCSs are satisfactory for UAVs flying 
a few hundreds of feet from the ground. However, it is not suffi-
ciently accurate to safely operate in an aircraft in urban areas with 
a high density of tall buildings. One straightforward solution is to 
Table 7
Urban Test 2: Mean and STD of the positioning error of the five GNSS/INS integrated 
positioning systems.

PX4 CKF DT RF RFFL

Mean of positioning error (m) 11.8 8.8 10.1 8.8 8.6
STD of positioning error (m) 12.2 8.0 10.9 8.8 8.8

integrate the GNSS solution with the INS. In this study, UAV posi-
tioning was first improved by integrating the GNSS/INS based on 
the conventional Kalman filter scheme. Subsequently, the adaptive 
Kalman filter was proposed to adaptively adjust the measurement 
noise covariance R, which implies the quality of the GNSS solution. 
To predict the quality, supervised machine-learning algorithms, in-
cluding the decision tree and random forest, were employed. The 
classification model of the positioning error was trained with the 
data that included almost all the operation areas in the Hong 
Kong testbed. In addition, fuzzy logic was developed to smooth 
the predicted class from the trained models by considering the 
classification result of the previous and current epochs. Based on 
the smoothed classified result from the fuzzy logic, the measure-
ment noise covariance can be adaptively tuned. According to the 
experimental results, the proposed integrated AKF GNSS/INS can 
effectively identify the level of GNSS error and improve the posi-
tioning result of the UAV.

It is worth noting that the proposed AKF was designed based 
on Pixhawk FCS; however, the proposed idea can also be imple-
mented with other integrated GNSSs/INSs by replacing the GNSS 
parameters provided in Table 1.

In some cases, the proposed AKF could fail to correctly adjust 
the measurement noise covariance. This occurs when the GNSS pa-
rameters output by the GNSS chip of Pixhawk are the same for 
both the epochs, with accurate and inaccurate GNSS solutions. In 
other words, the features are not sufficient to distinguish (or rep-
resent) the accuracy of the GNSS solutions. For future work, we 
plan to explore the relationship between the quality of the GNSS 
Fig. 21. Urban Test 2: Positioning error of the five GNSS/INS integrated positioning systems.

Fig. 22. Open-sky Test: Labeled class and classification result of RFFL.
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Fig. 23. Open-sky Test: Adaptive measurement noise covariance matrix R values of the position state based on RFFL.

Fig. 24. Open-sky Test: Positioning error of the Pixhawk system and the proposed RFFL AKF.
Fig. 25. Open-sky Test: Positioning result of the Pixhawk system and the proposed 
RFFL AKF.

Table 8
Open-sky Test: Mean and STD of the positioning error of Pixhawk 
system and the proposed RFFL AKF.

PX4 RFFL

Mean of positioning error (m) 2.2 2.4
STD of positioning error (m) 1.1 1.2

solution and the raw pseudo-range, as well as the carrier-to-noise 
ratio and dilution of precession.
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